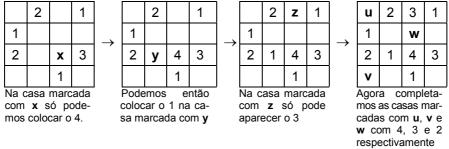
1. (alternativa D)

Pela simetria da figura, vemos que para cada região sombreada existe uma igual em branco. Logo, a parte sombreada tem metade da área do retângulo.

2. (alternativa D)

Uma maneira de iniciar o preenchimento da tabela é



e fica fácil completar a tabela

Logo a soma pedida é 4 + 3 + 4 + 2 = 13

3. (alternativa B)

Se n é um natural maior que 0 então 10^n é um número da forma $1\underline{00...00}$.

Logo
$$10^{1500} + 10^{1792} + 10^{1822} + 10^{1888} + 10^{1889} = 11\underbrace{00...00}_{65} 1\underbrace{00...00}_{29} 1\underbrace{00...00}_{291} 1\underbrace{00...00}_{291} 1\underbrace{00...00}_{291} e portanto a$$

soma dos algarismos desse número é 5.

4. (alternativa C)

A área do triângulo BEF é $\frac{\overline{EB} \times \overline{BC}}{2} = \frac{3 \times 4}{2} = 6 \text{ cm}^2$ e a área do retângulo ABCD é AB \times CD = $6 \times 4 = 24 \text{ cm}^2$. Logo, a área da parte sombreada é

área do retângulo ABCD – área do triângulo BEF = $24 - 6 = 18 \text{ cm}^2$.

5. (alternativa B)

Sejam *a, b, c, d, e* as cinco notas que se repetem em 2004 e 2005. A média em 2005, que queremos calcular, é

$$\frac{a+b+c+d+e+68}{6} = \frac{a+b+c+d+e}{6} + \frac{68}{6}$$

Logo, para saber a média em 2005, basta determinar $\frac{a+b+c+d+e}{6}$. Para isso usamos os dados sobre a média em 2004, que é

$$\frac{a+b+c+d+e+86}{6} = 84$$

Segue que

$$\frac{a+b+c+d+e}{6} + \frac{86}{6} = 84$$

donde

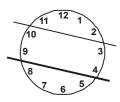
$$\frac{a+b+c+d+e}{6} = 84 - \frac{86}{6}$$

Assim, a média de 2005 foi

$$\frac{a+b+c+d+e}{6} + \frac{68}{6} = 84 - \frac{86}{6} + \frac{68}{6} = 81$$

6. (alternativa B)

Como $1+2+3+4+\cdots+11+12=78$, a soma dos números em cada uma das três partes é $78\div 3=26$. Como a divisão é feita por duas retas paralelas, segue que numa das três partes aparecem, necessariamente, quatro números consecutivos. Nesse caso, eles são 5, 6, 7 e 8, pois esses são os únicos quatro números consecutivos cuja soma é 26. Logo, já sabemos a posição de uma das retas, indicada com traço mais grosso na figura. A outra reta está determinada pelas condições de paralelismo e de separar os números em grupos de 4.



7. (alternativa B)

Se o grupo resolveu x problemas em janeiro, então nos outros meses eles resolveram 2x,4x,8x,16x e 32x problemas. Assim, o total de problemas resolvidos ao final de junho foi x + 2x + 4x + 8x + 16x + 32x = 63x. Logo 63x = 1134, donde $x = \frac{1134}{63} = 18$.

8. (alternativa C)

Solução 1: Os horários em que Bento deve tomar o remédio verde até terminar as 60 pílulas são 6, 12, 18 e 24 horas, todos os dias de 22 de abril a 06 de maio inclusive. Quanto ao remédio azul, vamos fazer uma tabela de horários:

Remédio Azul	22 abril	23	24	25	26	27	28	29	30	01 maio	02	03	04	05	
	06	02	03	04	05	01	02	03	04	05	01	02	03	04	
	11	07	80	09	10	06	07	08	09	10	06	07	08	09	
horários	16	12	13	14	15	11	12	13	14	15	11	12	13	14	
	21	17	18	19	20	16	17	18	19	20	16	17	18		
		22	23	24		21	22	23	24		21	22	23		
número de	4	_	-	_	4	-	_	E	E	4	_	E	E	2	Total
comprimidos no dia	4	5	5	5	4	5	5	5	5	4	5	5	5	3	65

Os 11 horários sombreados na tabela são aqueles em que Bento deve tomar simultaneamente os remédios verde e azul, ou seja, aqueles em que ele deve tomar um copo de leite. Logo, o número de copos de água que ele deve tomar (65-11)+(60-11)=103

Solução 2: Como o mdc entre 5 e 6 é 30, os horários de coincidência dos dois remédios ocorrem de 30 em 30 horas, começando às 6 horas do dia 22.

	22 abril	23	24	25	26	27	28	29	30	01 maio	02	03	04	05	
horários de coincidência	06	12	18	24	não há	06	12	18	24	não há	06	12	18		
número de comprimidos do remédio azul	4	5	5	5	4	5	5	5	5	4	5	5	5	3	Total 65

Nos dias 26 de abril e 01 de maio Bento só toma 4 comprimidos do remédio azul pois o primeiro horário é às 05 horas. Como no dia 05 de maio ele precisa tomar apenas 03 comprimidos do remédio

azul, não há coincidência de horários neste dia, pois caso houvesse ela ocorreria às 24 horas, o que corresponderia ao quarto comprimido do dia. A partir daqui a solução segue como na primeira solução.

9. (alternativa C)

Notamos que x é maior que 0,5 e menor que 1, isto é, 0,5 < x < 1. Como 2 é positivo, multiplicando por 2 todos os membros desta desigualdade o sinal é preservado e obtemos 1 < 2x < 2. Somando 1 a todos os membros obtemos 2 < 2x + 1 < 3, ou seja, 2x + 1 é um número entre 2 e 3. O único ponto na figura que satisfaz esta condição é o ponto T.

10. (alternativa A)

As informações do gráfico são dadas nas três primeiras colunas da tabela abaixo:

Cidade	População em 1990	População em 2000	Aumento da população	Aumento proporcional da população				
I	30	50	50 - 30 = 20	$\frac{20}{30}$				
II	60	50	decresceu	não teve				
III	70	70	70 - 70 = 0	0				
IV	100	150	150 – 100 = 50	50 100				
V	120	130	130 – 120 = 10	10 120				

Como $\frac{20}{30}$ é maior que $\frac{50}{100}$ e $\frac{10}{120}$. Concluímos que o maior aumento percentual de população entre 1990 e 2000 ocorreu na cidade I.

Na forma percentual, $\frac{20}{30} \approx 67\%$, $\frac{50}{100} = 50\%$ e $\frac{10}{120} \approx 8.3\%$.

11. (alternativa D)

Inicialmente o fabricante cobrava R\$ 20,00 por quilo e passou, com o aumento de preço, a cobrar R\$ 25,00 por quilo. Logo o aumento do preço foi de R\$ 5,00 por quilo e o aumento percentual de $\frac{5}{20} = 25\%$.

12. (alternativa E)

De
$$\frac{1}{a+11} = \frac{37}{73}$$
 segue que $a+11 = \frac{73}{37}$. Logo $a+13 = a+11+2 = \frac{73}{37}+2 = \frac{147}{37}$ e segue que $\frac{1}{a+13} = \frac{37}{147}$.

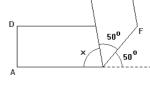
13. (alternativa C)

Observando a figura da fita dobrada vemos que $x + 50^{\circ} + 50^{\circ} = 180^{\circ}$, donde $x = 80^{\circ}$.

14. (alternativa D)

Seja x o número de bombons que cada aluno da 6^a série recebeu. Então cada aluno da 7^a série recebeu x-2 bombons, donde

número de alunos da
$$6^a$$
 série = $\frac{286}{x}$



е

número de alunos da
$$7^a$$
 série = $\frac{286}{x-2}$

Como número de alunos é um número inteiro segue que x e x-2 são divisores de 286. Os divisores de 286 são 1, 2, 11, 13, 22, 26, 143 e 286. Como os <u>únicos</u> divisores de 286 que diferem de 2 são 11

e 13, segue que
$$x = 13$$
. Portanto o número de alunos da turma da 7^a série é $\frac{286}{11} = 26$.

15. (alternativa E)

Os casais 1, 2 e $\overset{\circ}{3}$ podem sentar-se em seis ordens distintas: 123, 132, 213, 231, 312 e 321. Cada casal pode sentar-se de duas maneiras distintas: com o namorado à direita ou à esquerda de sua namorada. Logo, em cada uma das 6 ordens possíveis para os casais, temos $2 \times 2 \times 2 = 8$ possibilidades. Logo o número de ordens distintas em que as seis pessoas podem sentar-se é $6 \times 8 = 48$.

16. (alternativa C)

Ao montar o cubo, a face branca e a face cinza ficam opostas; logo as alternativas (A) e (B) estão excluídas. As alternativas (D) e (E) estão excluídas pois no cubo não podem aparecer um retângulo branco e outro cinza com um lado menor em comum.

17. (alternativa E)

Como queremos obter a soma 72, devemos colocar sinais de adição entre todos os algarismos a partir do 6, isto é 1 ? 2 ? 3 ? 4 ? 5 ? 6 + $\underbrace{7+8+9}_{24}$ = 72. Logo precisamos que

1 ? 2 ? 3 ? 4 ? 5 ? 6 = 48 . Com o mesmo argumento usado anteriormente, vemos que isso só pode ser feito como 1 ? 2 ? 3 ? 4 + $\underbrace{5+6}_{11}$. Para chegarmos a 72 devemos então ter

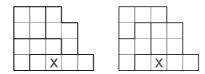
1?2?3?4=37, o que só pode ser feito como 1+2+34. A expressão final é 1+2+34+5+6+7+8+9=72 e logo são necessários 7 sinais de adição.

18. (alternativa C)

Como 1+2+3+4+5+6+7+8+9+10+11+12=78, a soma de duas faces opostas em cada cubo é $78 \div 6 = 13$. Logo, no cubo à direita, a face oposta à face 3 é a face 10, que é então uma das faces coladas. Falta descobrir qual a face do outro cubo que foi colada. O enunciado diz que é uma face par, logo só pode ser 6, 8 ou 12, porque já sabemos onde estão as faces 2, 4 e 10. Olhando para o cubo da esquerda vemos que a face 1 é oposta à face 12 e a face 5 oposta à face 8. Logo, nesse cubo, a face colada foi a 6. Portanto a resposta é $6 \times 10 = 60$

19. (alternativa A)

Por tentativa e erro vemos que há apenas duas maneiras de cobrir a figura com quatro peças, conforme mostrado abaixo. Em ambas, a casa com o X é coberta pela peca I.



20. (alternativa C)

Para que o produto seja 100, cada algarismo deve ser um divisor de 100. Os algarismos divisores de 100 são 1, 2, 4 e 5. Não é possível obter o produto 100 com números que tenham apenas 1 ou 2 algarismos, logo os números procurados têm 3 ou 4 algarismos, por serem menores que 10000. Vejamos como obter o produto 100 com 3 ou 4 desses algarismos. Para facilitar a listagem observamos que 8 não é divisor de 100, donde os algarismos 2 e 4 não podem aparecer num mesmo número. Logo os números procurados são:

- números de 3 algarismos: 455, 545, 554
- números de 4 algarismos: 1455, 1545, 1554, 4155, 4515, 4551, 5145, 5154, 5415, 5451, 5514, 5541, 2255, 2525, 2552, 5522, 5252, 5225.

num total de 21 números.